A Combinatorial Proof Of Rayleigh Monotonicity For Graphs

نویسندگان

  • Josef Cibulka
  • Jan Hladký
  • Michael A. La Croix
  • David G. Wagner
چکیده

We give an elementary, self-contained, and purely combinatorial proof of the Rayleigh monotonicity property of graphs. Consider a (linear, resistive) electrical network – this is a connected graph G = (V,E) and a set of positive real numbers y = {ye : e ∈ E} indexed by E. In this paper we allow graphs to have loops and/or multiple edges. The value of ye is interpreted as the electrical conductance of a wire joining the vertices incident with e. For any edge e ∈ E, there is a simple formula for the effective conductance Ye(G;y) of the rest of the graph G r {e}, measured between the ends of e. This is due to Kirchhoff [11] and is also known as Maxwell’s Rule [12]. For a subset S ⊆ E, let

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

عدد تناوبی گراف‌ها

In 2015, Alishahi and Hajiabolhassan introduced the altermatic number of graphs as a lower bound for the chromatic number of them. Their proof is based on the Tucker lemma, a combinatorial counterpart of the Borsuk-Ulam theorem, which is a well-known result in topological combinatorics. In this paper, we present a combinatorial proof for the Alishahi-Hajiabolhassan theorem. 

متن کامل

Elementary proof of Rayleigh formula for graphs SVOČ 2007

The Rayleigh monotonicity is a principle from the theory of electrical networks. Its combinatorial interpretation says for each two edges of a graph G, that the presence of one of them in a random spanning tree of G is negatively correlated with the presence of the other edge. In this paper we give a self-contained (inductive) proof of Rayleigh monotonicity for graphs. Rayleigh monotonicity ref...

متن کامل

Some Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs

In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.

متن کامل

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

Sums of squares and negative correlation for spanning forests of series parallel graphs

We provide new evidence that spanning forests of graphs satisfy the same negative correlation properties as spanning trees, derived from Lord Rayleigh’s monotonicity property for electrical networks. The main result of this paper is that the Rayleigh difference for the spanning forest generating polynomial of a series parallel graph can be expressed as a certain positive sum of monomials times ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2014